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Abstract

We present a 7
4 approximation algorithm for the matching augmentation problem (MAP):

given a multi-graph with edges of cost either zero or one such that the edges of cost zero form
a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost.

We first present a reduction of any given MAP instance to a collection of well-structured
MAP instances such that the approximation guarantee is preserved. Then we present a 7

4
approximation algorithm for a well-structured MAP instance. The algorithm starts with a
min-cost 2-edge cover and then applies ear-augmentation steps. We analyze the cost of the
ear-augmentations using an approach similar to the one proposed by Vempala & Vetta for the
(unweighted) min-size 2-ECSS problem (“Factor 4/3 approximations for minimum 2-connected
subgraphs,” APPROX 2000, LNCS 1913, pp.262–273).

Keywords: 2-edge-connected graph, 2-edge covers, approximation algorithms, bridges, connec-
tivity augmentation, forest augmentation problem, matching augmentation problem, network
design.

1 Introduction

A basic goal in the area of survivable network design is to design real-world networks of low cost that
provide connectivity between pre-specified pairs of nodes even after the failure of a few edges/nodes.
Many of the problems in this area are NP-hard, and significant efforts have been devoted in the
last few decades to the design of approximation algorithms.

One of the fundamental problems in the area is the minimum-cost 2-edge connected spanning
subgraph problem (abbreviated as min-cost 2-ECSS): given a graph together with non-negative
costs for the edges, find a 2-edge connected spanning subgraph (abbreviated as 2-ECSS) of minimum
cost. This problem is closely related to the famous Traveling Salesman Problem (TSP), and some of
the earliest papers in the area of approximation algorithms address the min-cost 2-ECSS problem
[4, 5]. In the context of approximation algorithms, this research led to the discovery of algorithmic
paradigms such as the primal-dual method [8, 19] and the iterative rounding method [10, 13],
and led to dozens of publications. Under appropriate assumptions, these methods achieve an
approximation guarantee of 2 for several key problems in survivable network design, including
min-cost 2-ECSS. Unfortunately, these generic methods do not achieve approximation guarantees
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below 2. Significant research efforts have been devoted to achieving approximation guarantees
below 2 for specific problems in the area of survivable network design. For example, building on
earlier work, an approximation guarantee of 4

3 has been achieved for unweighted (min-size) 2-ECSS
[16], where each edge of the input graph has cost one and the goal is to find a 2-ECSS with the
minimum number of edges.

There is an important obstacle beyond unweighted problems, namely, the special case of min-
cost 2-ECSS where the (input) edges have cost of zero or one, and the aim is to design an algorithm
that achieves an approximation guarantee below 2. This problem is called the Forest Augmentation
Problem (FAP). In more detail, we are given an undirected graph G = (V, E0 ∪ E1), where each
edge in E0 has cost zero and each edge in E1 has cost one; the goal is to compute a 2-ECSS
H = (V, F ) of minimum cost. We denote the cost of an edge e of G by cost(e), and for a subgraph
G′ of G, cost(G′) denotes

∑
e∈E(G′) cost(e). Observe that cost(H) = |F ∩ E1|, so the goal is to

augment E0 to a 2-ECSS by adding the minimum number of edges from E1. Intuitively, the zero-
edges define some existing network that we wish to augment (with edges of cost one) such that the
augmented network is resilient to the failure of any one edge. W.l.o.g. we may contract each of the
2-edge connected subgraphs formed by the zero-edges, and hence, we may assume that E0 induces
a forest: this motivates the name of the problem.

A key special case of FAP is the Tree Augmentation Problem (TAP), where the edges of cost zero
form a spanning tree. Nagamochi [9] first obtained an approximation guarantee below 2 for TAP,
and since then there have been several advances including recent work, see [1, 3, 12, 7].

We focus on a different special case of FAP called the matching augmentation problem (MAP):
given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a
matching, find a 2-ECSS of minimum cost. Note that loops are not allowed; multi-edges (parallel
edges) are allowed. From the view-point of approximation algorithms, MAP is “orthogonal” to
TAP in the sense that the forest of zero-cost edges has many connected components in MAP,
whereas this forest has only one connected component in TAP. In our opinion, MAP (like TAP)
is an important special case of FAP in the sense that none of the previous approaches (including
approaches developed for TAP over two decades) give an approximation guarantee below 2 for
MAP.

1.1 Previous literature & possible approaches for MAP

There is extensive literature on approximation algorithms for problems in survivable network de-
sign, and also on the minimum-cost 2-ECSS problem including its key special cases (including the
unweighted problem, TAP, etc.). To the best of our knowledge, there is no previous publication on
FAP or MAP, although the former is well known to the researchers working in this area.

Let us explain briefly why previous approaches do not help for obtaining an approximation
guarantee below 2 for MAP. Let G denote the input graph, and let n denote |V (G)|. Let opt
denote the optimal value, i.e., the minimum cost of a 2-ECSS of the given instance. Recall that the
standard cut-covering LP relaxation of the min-cost 2-ECSS problem has a non-negative variable xe
for each edge e of G, and for each nonempty set of nodes S, S 6= V , there is a constraint requiring
the sum of the x-values in the cut (S, V − S) to be ≥ 2; the objective function is to minimize∑

e∈E cost(e)xe.
The primal-dual method and the iterative rounding method are powerful and versatile methods

for rounding LP relaxations, but in the context of FAP, these methods seem to be limited to proving
approximation guarantees of 2 (or more).

Several intricate combinatorial methods that may also exploit lower-bounds from LP relax-
ations have been developed for approximation algorithms for unweighted 2-ECSS, e.g., the 4

3 -
approximation algorithm of [16]. For unweighted 2-ECSS, there is a key lower bound of n on opt
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(since any solution must have ≥ n edges, each of cost one). This no longer holds for MAP; indeed,
the analogous lower bound on opt is 1

2n for MAP. It can be seen that an α-approximation algo-
rithm for unweighted 2-ECSS implies a (3α−2)-approximation algorithm for MAP. (We sketch the
reduction: let M denote the set of zero-cost edges in an instance of MAP; observe that |M | ≤ opt;
we subdivide (once) each edge in M , then we change all edge costs to one, then we apply the
algorithm for unweighted 2-ECSS, and finally we undo the initial transformation; the optimal cost
of the unweighted 2-ECSS instance is ≤ opt + 2|M |, hence, the solution of the MAP instance has
cost ≤ α(opt + 2|M |) − 2|M | = αopt + (2α − 2)|M | ≤ (3α − 2)opt.) Thus the 4

3 -approximation
algorithm of [16] for unweighted 2-ECSS gives a 2-approximation algorithm for MAP. (Although
preliminary results and claims have been published on achieving approximation guarantees below 4

3
for unweighted 2-ECSS, there are no refereed publications to date, see [16].)

Over the last two decades, starting with the work of [9], a few methods have been developed to
obtain approximation guarantees below 2 for TAP. The recent methods of [1, 3] rely on so-called
bundle constraints defined by paths of zero-cost edges. Unfortunately, these methods (including
methods that use the bundle constraints) rely on the fact that the set of zero-cost edges forms a
connected graph that spans all the nodes, see [9, 12, 3]. Clearly, this property does not hold for
MAP.

1.2 Hardness of approximation of MAP and FAP

MAP is a generalization of the unweighted 2-ECSS problem (consider the special case of MAP with
M = ∅). The latter problem is known to be APX-hard; thus, it has a “hardness of approximation”
threshold of 1 + ε where ε > 0 is a constant, see [6]. Hence, MAP is APX-hard.

Given the lack of progress on approximation algorithms for FAP, one may wonder whether there
is a “hardness of approximation” threshold that would explain the lack of progress. Unfortunately,
the results and techniques from the area of “hardness of approximation” are far from the known
approximation guarantees for many problems in network design. For example, even for the notorious
Asymmetric TSP (ATSP), the best “hardness of approximation” lower bound known is around
75
74 ≈ 1.014, see [11].

1.3 Our method for MAP

We first present a reduction of any given instance of MAP to a collection of well-structured MAP
instances such that the approximation guarantee is preserved, see Sections 2, 3, 4. Then we present
a 7

4 approximation algorithm for a well-structured MAP instance, see Sections 3, 5, 6. Our algorithm
starts with a so-called D2 (this is a min-cost 2-edge cover) and then applies ear-augmentation steps.
We analyze the cost of the ear-augmentations using an approach similar to the one proposed by
Vempala & Vetta for the unweighted 2-ECSS problem [17]. Our presentation is self-contained and
formally independent of Vempala & Vetta’s manuscript; also, we address a weighted version of the
2-ECSS problem and our challenge is to improve on the approximation guarantee of 2, whereas
Vempala & Vetta’s goal is to achieve an approximation guarantee of 4

3 for the unweighted 2-ECSS
problem.

An outline of the paper follows. Section 2 has standard definitions and some preliminary results.
Section 3 presents an outline of our algorithm for MAP, and explains what is meant by a well-
structured MAP instance. Section 4 presents the pre-processing steps that give an approximation
preserving reduction from any instance of MAP to a collection of well-structured MAP instances;
some readers may prefer to skip this section (and refer back to the results/details as needed).
Sections 5, 6 present the 7

4 approximation algorithm for well-structured MAP instances, and prove
the approximation guarantee. Section 7 presents examples that give lower bounds on our results
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on MAP. The first example gives a construction such that opt ≈ 7
4τ , where τ denotes the minimum

cost of a 2-edge cover. The second example gives a construction such that the cost of the solution
computed by our algorithm is ≈ 7

4opt.

2 Preliminaries

This section has definitions and preliminary results. Our notation and terms are consistent with
[2], and readers are referred to that text for further information.

Let G = (V,E) be a (loop-free) multi-graph with edges of cost either zero or one such that the
edges of cost zero form a matching. We take G to be the input graph, and we use n to denote
|V (G)|. Let M denote the set of edges of cost zero. We call an edge of M a zero-edge and we call
an edge of E −M a unit-edge. We call a pair of parallel edges a {0, 1}-edge-pair if one of the two
edges of the pair has cost zero and the other one has cost one.

We use the standard notion of contraction of an edge, see [15, p.25]: Given a multi-graph H
and an edge e = vw, the contraction of e results in the multi-graph H/(vw) obtained from H by
deleting e and its parallel copies and identifying the nodes v and w. (Thus every edge of H except
for vw and its parallel copies is present in H/(vw); we disallow loops in H/(vw).)

For a graph H and a set of nodes S ⊆ V (H), δH(S) denotes the set of edges that have one end
node in S and one end node in V (H) − S; moreover, H − S denotes H[V (H) − S], the subgraph
of H induced by V (H) − S. For a graph H and a set of edges F ⊆ E(H), H − F denotes the
graph (V (H), E(H) − F ). We use relaxed notation for singleton sets, e.g., we use δH(v) instead
of δH({v}), and we use H − v instead of H − {v}.

We denote the cost of an edge e of G by cost(e). For a set of edges F ⊆ E(G), cost(F ) :=∑
e∈F cost(e), and for a subgraph G′ of G, cost(G′) :=

∑
e∈E(G′) cost(e).

2.1 2EC, 2NC, bridges and D2

A multi-graph H is called k-edge connected if |V (H)| ≥ 2 and for every F ⊆ E(H) of size < k,
H − F is connected. Thus, H is 2-edge connected if it has ≥ 2 nodes and the deletion of any one
edge results in a connected graph. A multi-graph H is called k-node connected if |V (H)| > k and
for every S ⊆ V (H) of size < k, H − S is connected. We use the abbreviations 2EC for “2-edge
connected,” and 2NC for “2-node connected.”

We assume w.l.o.g. that the input G is 2-edge connected. Moreover, we assume w.l.o.g. that
there are ≤ 2 copies of each edge (in any multi-graph that we consider); this is justified since an
edge-minimal 2-ECSS cannot have three or more copies of any edge (see Proposition 1 below).

For any 2EC graph H, let OPT(H) denote a min-cost 2-ECSS of H, and let opt(H) denote the
minimum cost of a 2-ECSS of H. When there is no danger of ambiguity, we use OPT rather than
OPT(H), and we use opt rather than opt(H).

By a bridge we mean a cut edge, i.e., an edge of a connected (sub)graph whose removal results
in two connected components, and by a cut node we mean a node of a connected (sub)graph whose
deletion results in two or more connected components. We call a bridge of cost zero a zero-bridge
and we call a bridge of cost one a unit-bridge.

By a 2ec-block we mean a maximal connected subgraph with two or more nodes that has no
bridges. Thus, a 2ec-block could be a connected component that has no bridges, or it could be a
bridgeless subgraph B of a connected component C such that there is a bridge (of C) incident to
B. (Observe that the 2ec-blocks of a graph H consist of the connected components with ≥ 2 nodes
of the graph obtained from H by deleting all bridges.) We call a 2ec-block pendant if it is incident
to exactly one bridge.

The next result characterizes edges that are not essential for 2-edge connectivity.
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Proposition 1. Let H be a 2EC graph and let e = vw be an edge of H. If H − e has two
edge-disjoint v, w paths, then H − e is 2EC.

By a 2-edge cover (of G) we mean a set of edges F of G such that each node v is incident to at
least two edges of F (i.e., F ⊆ E(G) : |δF (v)| ≥ 2, ∀v ∈ V (G)). By D2(G) we mean any minimum-
cost 2-edge cover of G (G may have several minimum-cost 2-edge covers, and D2(G) may refer to
any one of them); we use τ(G) to denote the cost of D2(G); when there is no danger of ambiguity,
we use D2 rather than D2(G), and we use τ rather than τ(G). Note that D2 may have several
connected components, and each may have one or more bridges; moreover, if a connected component
of D2 has a bridge, then it has two or more pendant 2ec-blocks.

The next result follows from Theorem 34.15 in [15, Chapter 34].

Proposition 2. There is a polynomial-time algorithm for computing D2.

The next result states the key lower bound used by our approximation algorithm.

Fact 3. Let H be any 2EC graph. Then we have opt(H) ≥ τ(H).

By a bridgeless 2-edge cover (of G) we mean a 2-edge cover (of G) that has no bridges; note that
we have no requirements on the cost of a bridgeless 2-edge cover. We mention that the problem of
computing a bridgeless 2-edge cover of minimum cost is NP-hard (there is a reduction from TAP),
and there is no approximation algorithm known for the case of nonnegative costs.

2.2 Redundant 4-cycles

By a redundant 4-cycle we mean a cycle C consisting of four nodes and four edges of G such that
V (C) 6= V (G), two of the (non-adjacent) edges of C have cost zero, and two of the nonadjacent
nodes of C have degree two in G. For example, a 4-cycle C = u1, u2, u3, u4, u1 with zero-edges
u1u2, u3u4 and unit-edges u2u3, u4u1 of a 2EC graph G is a redundant 4-cycle provided all edges
between V (C) and V (G)− V (C) are incident to either u1 or u3.

Observe that every 2-edge cover of G must contain the edges of every redundant 4-cycle. Also,
observe that two different redundant 4-cycles are disjoint (i.e., any node is contained in at most
one redundant 4-cycle).

2.3 Ear decompositions

An ear decomposition of a graph is a partition of the edge set into paths or cycles, P0, P1, . . . , Pk,
such that P0 is the trivial path with one node, and each Pi (1 ≤ i ≤ k) is either (1) a path that
has both end nodes in Vi−1 = V (P0) ∪ V (P1) ∪ . . . ∪ V (Pi−1) but has no internal nodes in Vi−1,
or (2) a cycle that has exactly one node in Vi−1. Each of P1, . . . , Pk is called an ear ; note that P0

is not regarded as an ear. We call Pi, i ∈ {1, . . . , k}, an open ear if it is a path, and we call it a
closed ear if it is a cycle. An open ear decomposition P0, P1, . . . , Pk is one such that all the ears
P2, . . . , Pk are open. (The ear P1 is always closed.)

Proposition 4 (Whitney [18]). (i) A graph is 2EC iff it has an ear decomposition.

(ii) A graph is 2NC iff it has an open ear decomposition.

2.4 Bad-pairs and bp-components

By a bad-pair we mean a pair of nodes {v, w} of the input graph G such that the edge vw is present
and has zero cost, and moreover, the deletion of both nodes v and w results in a disconnected
graph.
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By a bp-component we mean one of the connected components resulting from the deletion of
a bad-pair from G; see Figure 1. The set of all bp-components (of all bad-pairs) is a cross-free
family, see [15, Chap. 13.4]. Consider two bad-pairs {v, w} and {y, z}. One of the bp-components
of {v, w} contains {y, z}; call it C1. Then it can be seen that all-but-one of the bp-components of
{y, z} are contained in C1; the one remaining bp-component of {y, z}, call it C ′1, contains {v, w}
and all of the bp-components of {v, w} except C1. Thus, the union of the two bp-components C1

and C ′1 contains V (G).
The following fact is analogous to the fact that every tree on ≥ 2 nodes contains a node v such

that all-but-one of the neighbors of v are leaves. (To see this, consider a longest path P of a tree,
and take v to be the second node of P .)

Fact 5. Suppose that G has at least one bad-pair. Then there exists a bad-pair such that all-but-one
of its bp-components are free of bad-pairs.

Remark: Let us sketch an algorithmic proof of Fact 5. For any subgraph G′ of G, let #bp(G′)
denote the number of bad-pairs of G′. For any bad-pair {v, w} and its bp-components C1, . . . , Ck,
let us assume that the indexing is in non-increasing order of #bp(Ci), thus, we have #bp(C1) ≥
#bp(C2) ≥ · · · ≥ #bp(Ck).

We start by computing all the bad-pairs of G. Then we choose any bad-pair {v1, w1} and

compute its bp-components C
(1)
1 , . . . , C

(1)
k1

. If #bp(C
(1)
2 ) = 0, then we are done; our algorithm

outputs {v1, w1}. Otherwise, we pick C
(1)
2 and choose any bad pair {v2, w2} contained in C

(1)
2 .

We compute the bp-components C
(2)
1 , . . . , C

(2)
k2

of {v2, w2} (in G). As stated above, C
(2)
1 contains

C
(1)
1 as well as {v1, w1}; moreover, #bp(C

(1)
2 ) > #bp(C

(2)
2 ) + · · · + #bp(C

(2)
k2

), since the bad-pair

{v2, w2} is in C
(1)
2 but it is not in any of its own bp-components. We iterate these steps (i.e., if

#bp(C
(2)
2 ) 6= 0, then we pick any bad-pair {v3, w3} of C

(2)
2 , . . . ), until we find a bad-pair {v`, w`}

such that #bp(C
(`)
2 ) = 0; then we are done. Clearly, this algorithm is correct, and it terminates in

O(n) iterations.

y

v
w

z

(a) A graph with bad-pairs
(indicated by dashed lines).

y

z

(b) bp-components for the
bad-pair {v, w}.

v
w

(c) bp-components for the
bad-pair {y, z}.

Figure 1: Illustration of bad-pairs and bp-components.

3 Outline of the algorithm

This section has an outline of our algorithm. We start by defining a well structured MAP instance.

Definition 1. An instance of MAP is called well-structured if it has
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- no {0, 1}-edge-pairs,

- no redundant 4-cycles,

- no cut nodes, and

- no bad-pairs.

Section 4 explains how to “decompose” any instance of MAP G into a collection of well-
structured MAP instances G1, . . . , Gk such that a 2-ECSS H of G can be obtained by comput-
ing 2-ECSSes H1, . . . ,Hk of G1, . . . , Gk, and moreover, the approximation guarantee is preserved,
i.e., the approximation guarantee on G is ≤ the maximum of the approximation guarantees on

G1, . . . , Gk (in other words,
cost(H)

opt(G)
≤ max

i=1,...,k

{cost(Hi)

opt(Gi)

}
).

Algorithm (outline):

(0) apply the pre-processing steps (reductions) from Section 4 to obtain a collection of well-
structured MAP instances G1, . . . , Gk;

for each Gi (i = 1, . . . , k), apply steps (1),(2),(3):

(1) compute D2(Gi) in polynomial time (w.l.o.g. assume D2(Gi) contains all zero-edges of Gi);

(2) then apply “bridge covering” from Section 5 to D2(Gi) to obtain a bridgeless 2-edge cover H̃i

of Gi;

(3) then apply the “gluing step” from Section 6 to H̃i to obtain a 2-ECSS Hi of Gi;

(4) finally, output a 2-ECSS H of G from the union of H1, . . . ,Hk by undoing the transformations
applied in step (0).

The pre-processing of step (0) consists of four reductions:

(pp1) handle {0, 1}-edge-pairs,

(pp2) handle redundant 4-cycles,

(pp3) handle cut-nodes, and

(pp4) handle bad-pairs;

the first three reductions are discussed in Sections 4.1–4.3, and the last one is discussed in Sec-
tion 4.4. Step (0) applies (pp1) to obtain a collection of MAP instances; after that, there is
no further need to apply (pp1). Then, we iterate: while the collection of MAP instances has
one or more of the latter three “obstructions” (redundant 4-cycles, cut nodes, bad-pairs), we ap-
ply (pp2), (pp3), (pp4) in sequence. After ≤ n iterations, we have a collection of well-structured
MAP instances Gi. Then, we compute a near-optimal 2-ECSS Hi for each Gi using the algorithm
of Theorem 6 (below), and finally, we use the Hi subgraphs to construct a 2-ECSS of G.

Our 7
4 approximation algorithm for MAP follows from the following key theorem, and the fact

that the algorithm runs in polynomial time.

Theorem 6. Given a well-structured instance of MAP G′, there is a polynomial-time algorithm that
obtains a 2-ECSS H ′ from D2(G′) (by adding edges and deleting edges) such that cost(H ′) ≤ 7

4τ(G′).
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We use a credit scheme to prove this theorem; the details are presented in Sections 5 and 6.
The algorithm starts with D2 as the current subgraph; we start by assigning 7

4 initial credits to
each unit-edge of D2; each such edge keeps one credit to pay for itself and the other 3

4 credits are
taken to be working credits available to the algorithm; the algorithm uses these working credits to
pay for the augmenting edges “bought” in steps (2) or (3) (see the outline); also, the algorithm
may “sell” unit-edges of the current subgraph (i.e., such an edge is permanently discarded and is
not contained in the 2-ECSS output by the algorithm) and this supplies working credits to the
algorithm (see Sections 5, 6).

In an ear-augmentation step, we may add either a single ear or a double ear (i.e., a pair of
ears); see Section 5 (double ears may be added in Case 3, page 22) and Section 6 (double ears may
be added in Case 2, page 26). Although this is not directly relevant, we mention that double ear
augmentations are essential in matching theory, see [14, Ch.5.4]. As discussed above, in some of
the ear-augmentation steps, we may (permanently) delete some edges from the current subgraph;
see Section 5 (edges are deleted in double ear augmentations in Case 3, page 22) and Section 6
(edges are deleted in both Cases 1, 2).

Remark: The following examples show that when we relax the definition of a well-structured
MAP instance, then the inequality in Theorem 6 could fail to hold. See Figure 2 for illustrations.
(1) {0, 1}-edge-pairs (i.e., parallel edges of cost zero and one) are present. Then opt

τ ≈ 2 is possible.
Our construction consists of a root 2ec-block B0, say a 6-cycle of cost 6, and ` � 1 copies of the
following gadget that are attached to B0. The gadget consists of a pair of nodes v, w and two
incident edges: a copy of edge vw of cost zero, and a copy of edge vw of cost one. Moreover, we
have an edge between v and B0 of cost one, and an edge between w and B0 of cost one. Observe
that a (feasible) 2-edge cover of this instance consists of B0 and the two parallel edges (i.e., the two
copies of the edge vw) of each copy of the gadget, and it has cost 6 + `. Observe that any 2-ECSS
contains the two edges between {v, w} and B0. Thus, opt ≥ 2`, whereas τ ≤ 6 + `.
(2) Redundant 4-cycles are present. Then opt

τ ≈ 2 is possible. Our construction consists of a root
2ec-block B0, say a 6-cycle of cost 6, and ` � 1 copies of the following gadget that are attached
to B0. The gadget consists of a 4-cycle C = u1, . . . , u4, u1 that has two zero-edges u1u2, u3u4 and
two unit-edges u2u3, u4u1; moreover, we have an edge between u1 and B0 of cost one, and an edge
between u3 and B0 of cost one. Observe that a (feasible) 2-edge cover of this instance consists of
B0 and the 4-cycle C of each copy of the gadget, and it has cost 6 + 2`. Observe that for any
2-ECSS and for each copy of the gadget, the two edges between C and B0 as well as the four edges
of C are contained in the 2-ECSS. Thus, opt ≥ 4`, whereas τ ≤ 6 + 2`.
(3) Cut nodes are present. Then opt

τ ≈ 2 is possible. Our construction consists of ` copies of a
3-cycle C = u1, u2, u3, u1 where u1u2 is a zero edge and the other two edges have cost one. We
“string up” the ` copies, i.e., node u3 of the ith copy is identified with node u1 of the (i+1)th copy.
The optimal solution has all the edges, so opt = 2`, whereas a (feasible) 2-edge cover consists of a
Hamiltonian path together with two more edges incident to the two ends of this path, and it has
cost `+ 2; thus τ ≤ 2 + `.
(4) Bad-pairs are present. Then opt

τ ≈ 2 is possible. An example can be obtained by modifying
example (2) above.

4 Pre-processing

This section presents the four reductions used in the pre-processing step of our algorithm, namely,
the handling of the {0, 1}-edge-pairs, the redundant 4-cycles, the cut nodes, and the bad-pairs.
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v1 w1 v2 w2 v` w`

B0

(a) Example (1) of Remark.

u1

u2

u3

u4

u
(`)
1

u
(`)
2

u
(`)
3

u
(`)
4

B0

(b) Example (2) of Remark.

u1

u2

u3 u
(`)
1

u
(`)
2

u
(`)
3

(c) Example (3) of Remark.

u1 u2

u3u4

u
(`)
1

u
(`)
2

u
(`)
3

u
(`)
4

B0

(d) Example (4) of Remark.

Figure 2: MAP instances G that are not well-structured such that opt(G)
τ(G) ≈ 2. Edges of cost zero

and one are illustrated by dashed and solid lines, respectively.

4.1 Handling {0, 1}-edge-pairs

We apply the following pre-processing step to eliminate all {0, 1}-edge-pairs. We start with a simple
result.

Fact 7. Let H be an (inclusion-wise) edge-minimal 2EC graph, and let e1, e2 be a pair of parallel
edges. Then H−{e1, e2} has precisely two connected components, and each of these connected com-
ponents is 2EC.

Proof. Let v and w be the end nodes of e1, e2. By Proposition 1, H does not have three edge-
disjoint v, w paths, hence, H − {e1, e2} is disconnected. It follows that H − {e1, e2} has precisely
two connected components (deleting one edge from a connected graph results in a graph with ≤ 2
connected components). Let C1, C2 be the two connected components of H − {e1, e2}; clearly,
each of C1, C2 contains precisely one of the nodes v, w. Suppose that C1 is not 2EC; then it has
a bridge f . Since the parallel edges e1, e2 have exactly one end node in C1, f stays a bridge of
C1 ∪ C2 ∪ {e1, e2}. This is a contradiction, since H = C1 ∪ C2 ∪ {e1, e2} is 2EC.

Let H be any 2EC graph. We call a {0, 1}-edge-pair essential if its deletion results in a discon-
nected graph. When we delete an essential {0, 1}-edge-pair then we get two connected components
and each one is 2EC, by arguing as in the proof of Fact 7. Hence, when we delete all the essential
{0, 1}-edge-pairs, then we get a number of connected components C1, . . . , Ck such that each one is
2EC. Clearly, an approximately optimal 2-ECSS of H can be computed by returning the union of
approximately optimal 2-ECSSes of C1, . . . , Ck together with all the essential {0, 1}-edge-pairs of H;
moreover, it can be seen that the approximation guarantee is preserved, that is, the approximation
guarantee on H is ≤ the maximum of the approximation guarantees on C1, . . . , Ck.

The next observation allows us to handle the inessential {0, 1}-edge-pairs.

Fact 8. Suppose that H is 2EC and it has no essential {0, 1}-edge-pairs. Then there exists a
min-cost 2-ECSS of H that does not contain any unit-edge of any {0, 1}-edge-pair.
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Proof. Consider a min-cost 2-ECSS H ′ of H that contains the minimum number of {0, 1}-edge-
pairs, i.e., among all the optimal subgraphs, we pick one that has the fewest number of parallel
edges e, f such that cost(e) + cost(f) = 1. If H ′ has no {0, 1}-edge-pair, then the fact holds.
Otherwise, we argue by contradiction. We pick any {0, 1}-edge-pair e, f . Deleting both e, f from
H ′ results in two connected components C1, C2 such that each is 2EC, by Fact 7. Now, observe
that e, f is not essential for H, hence, H − {e, f} has an edge e′′ between C1 and C2. We obtain
the graph H ′′ from H ′ by replacing the unit-edge of e, f by the edge e′′. Clearly, H ′′ is a 2-ECSS
of H of cost ≤ cost(H ′), and moreover, it has fewer {0, 1}-edge-pairs than H ′. Thus, we have a
contradiction.

Now, focus on the input graph G. By the discussion above, we may assume that G has no
essential {0, 1}-edge-pairs. Then we delete the unit-edge of each {0, 1}-edge-pair. By Fact 8, the
resulting graph stays 2EC and the optimal value is preserved. Thus, we can eliminate all {0, 1}-
edge-pairs, while preserving the approximation guarantee.

Proposition 9. Assume that G has no essential {0, 1}-edge-pairs. Let Ĝ be the multi-graph ob-
tained from G by eliminating all {0, 1}-edge-pairs (as discussed above). Then opt(G) = opt(Ĝ).

Moreover, an α-approximation guarantee for Ĝ implies the same approximation guarantee for
G.

In what follows, we continue to use G to denote the multi-graph obtained by eliminating all
{0, 1}-edge-pairs (for the sake of notational convenience).

The next fact states that the restriction on the zero-edges of G is preserved when we contract
a set of edges E′ such that none of the end nodes of the zero-edges in E−E′ is incident to an edge
of E′ (i.e., the end nodes of the zero-edges of G/E′ are “original nodes” rather than “contracted
nodes.”)

Fact 10. Let G = (V,E) satisfy the restriction on the zero-edges (i.e., G has no {0, 1}-edge-pairs,
and the zero-edges form a matching). Suppose that we contract a set of edges E′ ⊂ E such that
there exists no node that is incident to both an edge in E′ and a zero-edge in E − E′. Then the
restriction on the zero-edges continues to hold for the contracted multi-graph G/E′.

4.2 Handling redundant 4-cycles

We contract all of the redundant 4-cycles in a pre-processing step. Recall that two distinct redun-
dant 4-cycles have no nodes and no edges in common. We first compute all the redundant 4-cycles
and then we contract each of these to a single node (i.e., we contract all four edges of each redun-
dant 4-cycle).

Proposition 11. Suppose that G has q redundant 4-cycles. Let Ĝ be the multi-graph obtained from
G by contracting all redundant 4-cycles. Then opt(G) = opt(Ĝ)+2q. Moreover, an α-approximation
guarantee for Ĝ implies the same approximation guarantee for G.

4.3 Handling cut nodes

Let H be any 2EC graph. Then H can be decomposed into blocks H1, . . . ,Hk such that each block
is either 2NC or else it consists of two nodes with two parallel edges between the two nodes. (Thus,
E(H) is partitioned among E(H1), . . . , E(Hk) and any two of the blocks Hi, Hj are either disjoint or
they have exactly one node in common.) It is well known that an approximately optimal 2-ECSS
of H can be computed by taking the union of approximately optimal 2-ECSSes of H1, . . . ,Hk;
moreover, the approximation guarantee is preserved, see [16, Proposition 1.4].
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Proposition 12. Suppose that G has cut nodes; let H1, . . . ,Hk be the blocks of G. Then opt(G) =∑k
i=1 opt(Hi). Moreover, an α-approximation guarantee for each of H1, . . . ,Hk implies the same

approximation guarantee for G.

4.4 Pre-processing for bad-pairs

This sub-section presents the pre-processing step of our algorithm that handles the bad-pairs. This
step partitions the edges of G among a number of sub-instances Gi such that each sub-instance
is 2NC and has no bad-pairs. We ensure the key property that the union of the 2-ECSSes of the
sub-instances Gi forms a 2-ECSS of G (see Fact 16).

4.4.1 Bad-pairs and bp-components

Recall that a bad-pair is a pair of nodes {v, w} of G such that G has an edge vw of zero cost, and
the deletion of both nodes v and w results in a disconnected graph.

For a bad-pair {v, w} and one of its bp-components C we use C{v,w} to denote the subgraph
of G induced by V (C) ∪ {v, w}; thus, we have C{v,w} = G[V (C) ∪ {v, w}]; moreover, if C has
≥ 2 nodes, then we use C� to denote the multi-graph obtained from C{v,w} by contracting the
zero-edge vw, whereas if C has only one node then we take C� to be the same as C{v,w} (to ensure
that C� is 2NC, see Fact 13, we have to ensure that it has ≥ 3 nodes; if C has only one node, then
note that C{v,w}/{vw} has only 2 nodes).

We sketch our plan for handling the bad-pairs in this informal and optional paragraph; readers
interested in the formal presentation may skip this paragraph. Assume that G has two or more
bad-pairs. We traverse the “tree of bp-components and bad-pairs”; at each iteration, we pick a
bad-pair {v`, w`} such that all-but-one of its bp-components are free of bad-pairs, see Fact 5. Let
C1 denote the (unique) bp-component that has one or more bad-pairs (w.l.o.g. assume C1 exists),
and let C2, . . . , Ck denote the bp-components free of bad-pairs; we call these the minimal bp-
components. Recall that for any 2EC graph H, we use τ(H) to denote the cost of a D2 subgraph
of H. It is easily seen that for a bp-component Ci, the subgraph of any optimal solution induced
by V (Ci) ∪ {v, w} has cost ≥ τ(Ci

�) (see Fact 15). Now, focus on an optimal solution and let
F ∗ denote its set of edges, i.e., (V, F ∗) is a 2-ECSS of G of minimum cost. Since (V, F ∗) is 2EC,
it can be seen that there exists a j ∈ {1, . . . , k} such that the graph (Cj

{v`,w`} − v`w`) contains
a v`, w` path (see the proof of Lemma 17); then, it follows that F ∗ ∪ {v`w`} induces a 2-ECSS of
Cj
{v`,w`}. In other words, we may assume w.l.o.g. that the zero-edge v`w` (of the bad-pair) is in

F ∗, and we may “allocate” it to one of the bp-components. Informally speaking, our plan is to
return k sub-instances such that one of the sub-instances is of the form Cj

{v`,w`} while the other
sub-instances are of the form Ci

�; this can be viewed as “allocating” the zero-edge v`w` to one
carefully chosen bp-component Cj by “mapping” Cj to the sub-instance Cj

{v`,w`}, while all other
bp-components Ci (i 6= j) are “mapped” to sub-instances Ci

�. We “allocate” the zero-edge v`w` as
follows: For each i = 1, . . . , k, we compute τ(Ci

{v`,w`}) and τ(Ci
�); these two numbers are either

the same or they differ by one (see Fact 14). Suppose that there is an index j ∈ {2, . . . , k} such
that these two numbers are the same for Cj . Then we “allocate” the zero-edge to Cj ; in case of ties,
we pick any j such that τ(Cj

{v`,w`}) = τ(Cj
�). (It can be seen that this allocation is best.) On

the other hand, if the two numbers differ for each j ∈ {2, . . . , k}, then we “allocate” the zero-edge
to C1. (Although this allocation may disagree with the allocation used by the optimal solution,
it turns out that we incur no “loss”.) This brings us to the end of the iteration for the bad-pair
{v`, w`}; the algorithm applies the same method to the “remaining graph,” namely, either C1

{v`,w`}

or C1
�. We mention that C1 plays a special role in our pre-processing algorithm; this will become

clear when we prove its correctness (see Lemma 18 below). See the example in Figure 3.
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a
b

C1 C2

(a) A bad-pair {a, b} whose
bp-components are C1 and C2.

a
b

(b) The graphs C
{a,b}
1 (left) and

C�2 (right).

a
b

(c) The graphs C�1 (left) and

C
{a,b}
2 (right).

Figure 3: An example illustrating a “bad allocation” of the zero-edge of a bad-pair. The graph
(left subfigure) has one bad-pair {a, b} and its bp-components are C1 (with 4 nodes) and C2 (with
2 nodes); all edges have cost one, except ab; note that opt = 8. If ab is “allocated” to C1, the sum

of the costs of the D2 subgraphs of the resulting sub-instances is 9.

Remark: Recall that k denotes the number of bp-components of the bad-pair {v, w}. Readers
may focus on the key case of k = 2 for the rest of this section; our presentation is valid for any
k ≥ 2.

Fact 13. Let v, w,C be as stated above, and let G be 2NC. Then both C{v,w} and C� are 2NC.

Proof. First, consider C{v,w}; observe that it has ≥ 3 nodes; since G is 2NC and C is a con-
nected component of G − {v, w}, for each node z ∈ V (C), there exist two openly disjoint paths
between z and {v, w} in C{v,w}; hence, it can be seen that C{v,w} is 2NC.

Now, consider C�, and let v∗ denote the node resulting from the contraction of vw; by definition,
C� has ≥ 3 nodes; arguing as above, for each node z ∈ V (C), there exist two openly disjoint paths
between z and v∗ in C�; moreover, C� − v∗ has a single connected component; hence, it can be
seen that C� is 2NC.

Fact 14. Let v, w,C be as stated above, and let G be 2NC. We have,

τ(C�) ≤ τ(C{v,w}) ≤ 1 + τ(C�).

Proof. Suppose that C has ≥ 2 nodes (if C has one node, then C� = C{v,w}). To show the first
inequality, we start with a D2 subgraph of C{v,w} and contract the zero-edge vw; this results in a
2-edge cover of C�. Clearly, the cost of this 2-edge cover is ≥ τ(C�).

To show the second inequality, we start with a D2 subgraph of C�, then “uncontract” the
zero-edge vw, and then (if needed) add an edge (of cost one) incident to either v or w.

Fact 15. Let {v, w} be a bad-pair, and let C1, . . . , Ck be all of its bp-components. Let H be a
2-ECSS of G. Consider any Ci, where i ∈ {1, . . . , k}. Then H[V (Ci) ∪ {v, w}] is connected, and
moreover, either it is 2EC or it has exactly one bridge, namely, vw. Therefore, H[V (Ci

�)] is 2EC.
Hence, cost(H[V (Ci) ∪ {v, w}]) ≥ opt(Ci

�) ≥ τ(Ci
�).

The above fact is essential for our analysis. It states that for any 2-ECSS H, the subgraph
induced by V (Ci) ∪ {v, w} is either 2EC or it is connected and has vw as its unique bridge. (To
see this, observe that for any node u ∈ V (Ci) there exist two edge-disjoint paths that start at u,
end at either v or w, and have all internal nodes in V (Ci).) Therefore, the subgraph obtained
from H[V (Ci) ∪ {v, w}] by contracting the edge vw is 2EC. This implies the key lower bound,
cost(H[V (Ci) ∪ {v, w}]) ≥ opt(Ci

�).
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Fact 16. Let {v, w} be a bad-pair, and let C1, . . . , Ck be all of its bp-components. Suppose that we
pick one of these bp-component Cj and compute a 2-ECSS Hj of Cj

{v,w}. For each of the other
bp-components Ci, i ∈ {1, . . . , k} − {j}, we compute a 2-ECSS Hi of Ci

�. Then the union of the
edge sets of Hj and H1, . . . ,Hj−1, Hj+1, . . . ,Hk gives a 2-ECSS of G.

Let {v, w} be a bad-pair, and let C1, . . . , Ck be its bp-components. Clearly, we have

opt(G) ≥
k∑
i=1

τ(Ci
�).

The next lemma gives a better lower bound on opt(G).

Lemma 17. Let {v, w} be a bad-pair, and let C1, . . . , Ck be its bp-components. Suppose that for
j = 2, . . . , k, we have τ(Cj

�) < τ(Cj
{v,w}). Then we have

opt(G) ≥ τ(C1
{v,w}) +

k∑
i=2

τ(Ci
�).

Proof. Let F ∗ be the set of edges of an optimal solution. We partition F ∗−vw into k sets F ∗1 , ..., F
∗
k

by placing an edge e ∈ F ∗ − vw in F ∗i iff both ends of e are in V (Ci) ∪ {v, w}. By Fact 15, F ∗i
induces a 2-ECSS of Ci

�, ∀i ∈ {1, . . . , k}.
W.l.o.g. we may assume that the zero-edge vw is in F ∗. Since the optimal subgraph (V, F ∗)

is 2EC, there exists a j ∈ {1, . . . , k} such that the graph (Cj
{v,w} − vw) contains a v, w path. By

Fact 15, F ∗j ∪{vw} induces a 2-ECSS of Cj
{v,w}, hence, cost(F ∗j ) ≥ τ(Cj

{v,w}). Therefore, we have

opt(G) ≥ τ(Cj
{v,w}) +

∑k
i=1,i 6=j τ(Ci

�).

If j = 1, then we have proved the inequality in the lemma. Otherwise, observe that τ(Cj
{v,w}) =

1 + τ(Cj
�), and τ(C1

{v,w}) ≤ 1 + τ(C1
�) (by Fact 14), hence, we obtain the required inequality as

follows:

opt(G) ≥ 1 +
k∑
i=1

τ(Ci
�) ≥ τ(C1

{v,w}) +
k∑
i=2

τ(Ci
�).

4.4.2 Pre-processing algorithm

Suppose that G is 2NC and it has one or more bad-pairs.

Pre-processing Algorithm (outline):

(0) pick a bad-pair {v, w} that satisfies the condition in Fact 5, and let its bp-components be
C1, C2, . . . , Ck, where C2, . . . , Ck are minimal bp-components (free of bad-pairs);

(1) for each i = 2, . . . , k, we compare τ(Ci
�) and τ(Ci

{v,w}); if the former is strictly smaller than
the latter for all i = 2, . . . , k, then we return the list of graphs C2

�, . . . , Ck
� and C1

{v,w};
informally speaking, we allocate the zero-edge vw to C1;

(2) otherwise, we have at least one j ∈ {2, . . . , k} such that τ(Cj
�) = τ(Cj

{v,w}); then we
return the list of graphs C1

�, . . . , Cj−1
�, Cj+1

�, . . . , Ck
� and Cj

{v,w}; informally speaking,
we allocate the zero-edge vw to Cj ;

(3) let G′ denote the “remaining graph,” either C1
{v,w} or C1

�; stop if G′ has no bad-pairs,
otherwise, apply the same pre-processing iteration to G′.
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Let τalg(G) denote the sum of the costs of the D2 subgraphs of the graphs Gi returned by
the pre-processing algorithm, where each Gi is of the form Cj

{v`,w`} or Cj
� w.r.t. some bad-pair

{v`, w`}; thus, τalg(G) =
∑

i τ(Gi). We use the same notation τalg(·) for other 2NC graphs.

Lemma 18.
opt(G) ≥ τalg(G)

Proof. We use induction on the number of bad-pairs. It is easily seen, via Lemma 17, that the
result holds if either G has no bad-pairs or G has exactly one bad-pair. Now, assume that G has
two or more bad-pairs.

Let {v, w} be the initial bad-pair for our pre-processing, let C1, . . . , Ck denote all of its bp-
components, and let C2, . . . , Ck be minimal bp-components (free of bad-pairs). Let H1, . . . ,Hk

denote the graphs corresponding to C1, . . . , Ck returned by the pre-processing (i.e., each Hi is
either Ci

� or Ci
{v,w}, where i ∈ {1, . . . , k}). For each i = 1, . . . , k, let Vi denote the set of nodes

V (Ci) ∪ {v, w}; thus, Vi denotes the node-set of Ci
{v,w}.

We have τalg(G) = τalg(H1)+

k∑
i=2

τalg(Hi); to see this, note that the execution of the algorithm

on G consists of two stages: the first stage applies to the graphs H2, . . . ,Hk and it computes
τalg(H2), . . . , τ

alg(Hk), while the second stage applies to the graph H1 and it computes τalg(H1).
Let G∗ denote an optimal solution, i.e., a 2-ECSS of minimum cost, and w.l.o.g. assume that

G∗ contains all zero-edges of G. We have opt(G) = cost(G∗) =
∑k

i=1 cost(G∗[Vi]).
By the induction hypothesis, we have opt(Hi) ≥ τalg(Hi), ∀i ∈ {1, . . . , k}.
By Fact 15 and the induction hypothesis, we have

if Hi is of the form Ci
�, then

cost(G∗[Vi]) ≥ opt(Hi) ≥ τalg(Hi), ∀i ∈ {1, . . . , k}. (∗)

We complete the proof by examining a few cases.

Case 1: the zero-edge vw is allocated to C1: First, suppose that G∗[V1] is 2EC. Then, we
have cost(G∗[V1]) ≥ opt(H1) ≥ τ(H1) = τalg(H1); combining this with (∗) we have

opt(G) =
k∑
i=1

cost(G∗[Vi]) ≥
k∑
i=1

opt(Hi) ≥
k∑
i=1

τalg(Hi) = τalg(G).

Now, suppose that G∗[V1] is not 2EC; then, by Fact 15, it is connected and has only one
bridge, namely, vw. Moreover, it can be seen that G has an edge ê whose end nodes are in
two different connected components ofG∗[V1]−vw. (To see this, note thatG[V1] is 2NC, hence,
(G[V1]−vw) has a v, w path, and one of the edges of this path satisfies the requirement on ê.)
Thus, adding ê to G∗[V1] results in a 2EC graph of cost 1+cost(G∗[V1]) ≥ opt(H1) ≥ τ(H1) =
τalg(H1). Also, observe that G∗ has two edge-disjoint v, w paths, hence, one of the subgraphs
G∗[V`] − vw, where ` ∈ {2, . . . , k}, has a v, w path. Hence, cost(G∗[V`]) ≥ τ(C`

{v,w}) = 1 +
τ(C`

�) = 1 + τalg(H`) (we used the fact that τ(Ci
{v,w}) > τ(Ci

�), ∀i ∈ {2, . . . , k}). By
the above two inequalities and (∗), we have

opt(G) =

k∑
i=1

cost(G∗[Vi]) ≥

(τalg(H1)− 1) + (τalg(H`) + 1) +
∑

i∈{2,...,`−1,`+1,...,k}

τalg(Hi) = τalg(G).
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Case 2: the zero-edge vw is allocated to Cj, j ∈ {2, . . . , k}: Thus, we have τ(Cj
�) = τ(Cj

{v,w})
(otherwise, vw cannot be allocated to Cj). Then, by Fact 15, we have

cost(G[Vj ]) ≥ τ(Cj
�) = τ(Cj

{v,w}) = τalg(Hj).

This, together with (∗), implies that opt(G) ≥ τalg(G).

This completes the proof of the lemma.

Proposition 19. Suppose that a 2-ECSS of cost ≤ α τ(Gi) can be computed in polynomial time for
any well-structured MAP instance Gi. Then the reduction for handling bad-pairs (namely, (pp4)
in Section 3) computes a 2-ECSS of cost ≤ α τ(G) for G, assuming that each of the sub-instances
Gi computed by the reduction is well-structured (recall that each Gi is of the form Cj

{v`,w`} or Cj
�

w.r.t. some bad-pair {v`, w`}). Moreover, the reduction can be implemented in polynomial time.

Proof. Lemma 18 states that τalg(G) ≤ opt(G). This inequality implies the first part of the
proposition. To see this, observe that we can compute a 2-ECSS of cost ≤ α τ(Gi) for each of the
sub-instances Gi computed by the reduction; the union of all these 2-ECSSes is a 2-ECSS of G (by
Fact 16), and it has cost ≤ α

∑
i τ(Gi) ≤ α τalg(G) ≤ α opt(G) (in fact, by Theorem 6, we may

fix α = 7
4).

It can be seen that this reduction runs in polynomial time.

5 Bridge covering

In this section and in Section 6, we assume that the input is a well-structured MAP instance.
We start by illustrating our method for bridge covering on a small example. After computing

D2, recall that we give 1.75 initial credits to each unit-edge of D2, thereby giving each of these edges
0.75 working credits (we keep aside one credit to buy the unit-edge for our solution). Consequently,
each 2ec-block of D2 gets ≥ 1.5 working credits (this is explained below). We want to buy more
edges to add to D2 such that all bridges are “covered”, and we pay for the newly added edges via
the working credits.

Observe that each 2ec-block of D2 has ≥ 1.5 working credits, because it has ≥ 2 unit-edges;
to see this, suppose that a 2ec-block B has b nodes; if b = 2, then B has two parallel unit-edges;
otherwise, B has ≥ b edges and has ≤ bb/2c zero-edges, so B has ≥ db/2e unit-edges, and we have
b ≥ 3.

In what follows, we use the term credits to mean the working credits of the algorithm; this
excludes the unit credit retained by every unit-edge of the current solution subgraph; for example,
a 6-cycle of D2 that consists of four unit-edges has 3 credits (and it has 7 initial credits).

Consider an example such that D2 has a connected component C0 that has one bridge and two
2-ec blocks R and U ; let ru denote the unique bridge where r is in R and u is in U . (It can be
seen that ru is a zero-bridge, but we will not use this fact.) Since G is assumed to be 2NC, G− ru
is connected, hence, it contains a u, r path; let us pick a u, r path Y of G − ru that has only its
prefix and suffix in common with C0 and that has the minimum number of non-D2 edges. Our
plan is to augment D2 by adding the edge set E(Y ) − E(D2), thus “covering” the bridge ru. We
may view this as an “ear-augmentation step” that adds the ear Y . We have to pay for the non-D2
edges of Y by using the credits available in D2. Let us traverse Y from u to r, and each time we
see a non-D2 edge of Y , then we will pay for this edge. For the sake of illustration, consider the
example in Figure 4b; note that the u, r path Y (in the right subfigure) has ` = 4 non-D2 edges
(indicated by dashed lines). When we traverse Y starting from u, then observe that each of the
first (`− 1) of these edges has its last node in a distinct 2ec-block of D2 (moreover, none of these
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r u
R UC0

(a) The D2 subgraph is indicated by solid lines; it
has 5 connected components, one has the bridge ru

and the other 4 are bridgeless. The dashed lines
indicate the edges of E(G)− E(D2).

r u
R U

(b) The thick lines indicate a “shortest” u, r path of
G− ru; this path has the minimum number

of non-D2 edges (4 dashed lines); our goal is to
“pay” for these 4 non-D2 edges via the credits

available in D2.

Figure 4: Illustration of bridge covering on a simple example.

(`− 1) 2ec-blocks is in C0). We pay for these (`− 1) edges by borrowing one credit from the credit
of these (`− 1) 2ec-blocks. We need one more credit to pay for the last non-D2 edge of Y . We get
this credit from the prefix of Y between its start and its first non-D2 edge; in particular, we borrow
one credit from the credit of U . Thus, we can pay for all the non-D2 edges of Y . Observe that by
adding the edge set E(Y )−E(D2) to D2, we have merged several 2ec-blocks (including R and U)
into a new 2ec-block. We give the new 2ec-block (that contains R and U) the credit of R as well
as any unused credit of the other 2ec-blocks incident to Y .

The general case of bridge covering is more complicated.

Remark: For the sake of exposition, we may impose a direction on a path, cycle, or ear (e.g., we
traverse Y from u to r in the discussion above). Nevertheless, the input G is an undirected graph,
so (formally speaking) there is no direction associated with paths or cycles of G.

5.1 Post-processing D2

Immediately after computing D2, we apply a post-processing step that replaces some unit-edges of
D2 by other unit-edges to obtain another D2 that we denote by D̂2 that satisfies the following key
property:

Every pendant 2ec-block B of D̂2 that is incident to a zero-bridge has cost(B) ≥ 3,
and hence, has ≥ 2.25 credits (see part (2) of the credit invariant below).

In other words, if a 2ec-block of D̂2 has ≤ 2 unit-edges, then either the 2ec-block is not pendant
(i.e., it is incident to no bridges or ≥ 2 bridges) or it is pendant and is incident to a unit-bridge.

For any subgraph G′ of G, let F0(G
′) denote the set of zero-bridges (of G′) that are incident to

pendant 2ec-blocks (of G′) of cost ≤ 2 (the notation F0 is used only in this subsection); moreover,
let #comp(G′) denote the number of connected components of G′. Thus, the goal of the post-

processing step is to compute D̂2 such that F0(D̂2) is empty.
The post-processing step is straightforward. W.l.o.g. assume that the initial D2 contains all the

zero-edges; we start with this D2 and iterate the following step. Let D2old denote the D2 at the start
of the iteration. If F0(D2old) is empty then we are done, we take D2old to be D̂2. Otherwise, we
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pick any zero-bridge v0v1 in F0(D2old), and we take B to be a pendant 2ec-block with cost(B) = 2
that is incident to v0v1; note that B exists by the definition of F0. Now, observe that all of the
edges of B incident to v0 have cost one, hence, it can be seen that B has either 2 or 3 nodes; then,
since G is 2NC, it can be seen that G has a unit-edge e between V (B)− {v0} and V − V (B), and
moreover, B has a unit-edge f that is incident to e and to v0. We replace f by e. It is easily seen
that the resulting subgraph is a 2-edge cover of the same cost; we denote it by D2new.

We claim that F0(D2new) ⊆ F0(D2old), and moreover,

|F0(D2new)|+ #comp(D2new) < |F0(D2old)|+ #comp(D2old).

To see this, first suppose that the end nodes of e are in two different connected components of
D2old; then it can be seen that F0(D2new) ⊆ F0(D2old), and hence, the claimed inequality holds;
otherwise, (the end nodes of e are in the same connected component of D2old) it can be seen that
v0v1 is not a bridge of D2new and it can be seen that F0(D2new) is a proper subset of F0(D2old),
and hence, the claimed inequality holds.

Thus, after O(n) iterations, we find D̂2 that satisfies the key property. See Figure 5 for illus-
trations.

Proposition 20. There is a polynomial-time algorithm that finds a 2-edge cover D̂2 such that
F0(D̂2) is empty; thus, D̂2 satisfies the key property.
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v1 v2 v3
B B1

e
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v1 v2 v3
B B1

e

f

C1

Figure 5: Illustrations of some cases that could arise during post-processing. Edges of D2 are
indicated by thick lines. Edges of cost zero and one are indicated by dashed and solid lines,

respectively.

5.2 Credit invariant and charging lemma

Let H = (V, F ) denote the current graph of picked edges; thus, at the start, H is the same as D̂2,
and we may assume that H has one or more bridges (otherwise, bridge covering is trivial). By an
original 2ec-block B of H we mean a 2ec-block (of the current H) such that B is also a 2ec-block

of D̂2 (i.e., the set of edges incident to V (B) is the same in both D̂2 and the current H). By a new
2ec-block of H we mean a 2ec-block (of the current H) that is not an original 2ec-block. Similarly,
we define an original/new connected component of H.

We call a node v of H a white node if v belongs to a 2ec-block of H, otherwise, we call v a black
node.

Fact 21. Suppose that H has one or more black nodes. Let v be a black node of H. Then all edges
of H incident to v are bridges of H, and v is incident to ≥ 2 bridges of H. Every maximal path of
H that starts with v contains a white node.

17



Remark: Let H ′ denote the graph obtained from H by contracting each 2ec-block; thus, each
2ec-block of H maps to a “contracted” white node of H ′, each black node of H maps to a black
node of H ′, and each bridge of H maps to a bridge of H ′. Clearly, H ′ is a forest; it may have
isolated nodes (these correspond to bridgeless connected components of H). Clearly, H ′ has ≥ 2
edges incident to each black node.

By a b-path of H we mean a path consisting of bridges that starts and ends with arbitrary
nodes (white or black) such that all internal nodes are black nodes. We say that two 2ec-blocks of
a connected component of H are b-adjacent if there exists a b-path whose terminal nodes are in
these two 2ec-blocks.

Initially, our algorithm picks a connected component C0 of H = D̂2 that has one or more
bridges, and then picks any pendant 2ec-block of C0 and designates it as the root 2ec-block R (in
this section, R always denotes the root 2ec-block). Also, the algorithm picks the unique bridge of
C0 incident to R; we denote this bridge by ru, where r is in R. If ru is a zero-bridge, then since C0

is an original connected component, R has ≥ 2.25 credits (by the key property of D̂2); otherwise,
R has ≥ 1.5 credits. Immediately after designating R, we ensure that R has ≥ 2 credits. If R is
short of credit (i.e., it has only 1.5 credits), then we borrow 0.5 credits from a b-adjacent 2ec-block
of C0.

The bridge covering step maintains the following invariant. (At the end of this section, we argue
that this invariant is preserved in each iteration, see Proposition 24.)

Credit invariant:

(1) Each original bridgeless connected component has ≥ 1.5 credits, and each new bridgeless con-
nected component has ≥ 2 credits. Moreover, each unit-bridge of H has 0.75 credits.

(2) Within each original connected component of H each pendant 2ec-block that is incident to a
zero-bridge has ≥ 2.25 credits.

(3) Suppose that the root 2ec-block R is well defined. Then either R is incident to a unit-bridge
and has ≥ 2 credits, or R has ≥ 2.25 credits. Moreover, each 2ec-block that is b-adjacent to R
has ≥ 1 credits, and every other 2ec-block of H has ≥ 1.5 credits.

In an arbitrary iteration of the algorithm, either R is a pendant 2ec-block of an original con-
nected component C0 of H, or R has been designated as the root 2ec-block by the previous iteration.
If possible, the algorithm chooses ru to be a unit-bridge incident to R, otherwise, ru is a zero-bridge
incident to R.

When we remove the edge ru from C0 then we get two connected components; let us denote
them by Cr0 (it contains r but not u) and Cu0 (it contains u but not r). Recall that G − ru has
a path between Cu0 and Cr0 . Let P be such a path of G − ru that starts at some node a0 of Cu0 ,
ends at some node z0 of Cr0 , has no internal nodes in C0, and (subject to the above) minimizes
|E(P ) − E(H)|. Note that there could be many choices for the nodes a0 and z0; although the
choice of these nodes is important for our analysis (see Lemma 23 and its proof), the next lemma
(Lemma 22) and its proof apply for all valid choices of these two nodes. See Figure 6.

Let Hnew denote H ∪ (E(P )−E(H)) and let Bnew denote the 2ec-block of Hnew that contains
a0, z0, and R. We designate Bnew as the root 2ec-block of Hnew, provided Bnew is incident to a
bridge of Hnew.

Each iteration may be viewed as an ear-augmentation step that adds either one or two open
ears to C0, e.g., the path P may be viewed as an open ear w.r.t. C0. On the other hand, our
charging scheme (for paying for the edges of E(P )− E(H)) views each iteration as adding an ear
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Figure 6: Illustration of plan for “bridge covering.” Large circles indicate 2ec-blocks. Dashed lines
indicate P . Q is the path of C0 between r and a0, where a0 is the unique node of P in Cu0 .

w.r.t. R, that is, we take the ear to be the union of three paths, namely, an r, a0 path of C0 that
contains ru, the path P , and a path of C0 between z0 and R (we mention that our charging scheme
also uses the credits available in the first of these three paths). To avoid confusion, we call these
the R-ears, and unless mentioned otherwise, an “ear” means an ear w.r.t. C0.

The next lemma explains how we can use the credits available in H to pay for all-but-one of the
unit-edges added by an ear-augmentation step. We use credits(H) to denote the (working) credit
of H (i.e., the sum of the (initial) credits of the unit-edges of H minus the number of unit-edges of
H).

Lemma 22. Let H,C0 be as stated above, and suppose that H satisfies the credit invariant. Let
P be an open ear w.r.t. C0 with end nodes a0, z0 such that |E(P ) − E(H)| is minimum. Let
C1, . . . , Ck denote the connected components of H that contain (at least) one internal node of P
(thus, C0 6= Ci, ∀i = 1, . . . , k). Then, the credits of C1, . . . , Ck can be redistributed such that the
credit invariant holds for Hnew, and we have

|E(P )− E(H)| − 1 ≤ credits(H)− credits(Hnew).

Proof. Our goal is to show that we can pay via the credits of C1, . . . , Ck for all-but-one of the edges
of E(P ) − E(H), while ensuring that the credit invariant holds for Hnew. When we traverse P
from a0 to z0, then observe that each of the edges of E(P ) − E(H), except the last such edge,
has its last end node in a connected component Ci 6= C0 of H; we use the credits available in
that connected component to pay the cost of the edge. The rest of the proof shows how we can
obtain one unit from the credit of the relevant connected component while ensuring that the credit
invariant continues to hold for Hnew. (Proposition 24 below shows that the credit invariant is
preserved in each iteration.)

Consider any original connected component C 6= C0 of H that contains one of the internal
nodes of P . See Figure 7. By our choice of P , there is a unique edge of P that “enters” C and
there is a unique edge of P that “exits” C, i.e., there is a unique edge f with one end node in C
and the other end node in the subpath of P between a0 and C, and similarly, there is a unique
edge e with one end node in C and the other end node in the subpath of P between C and z0.

Let s0 denote the end node of f in C, and let t0 denote the end node of e in C. Possibly, s0 = t0.
Let P (s0, t0) denote the s0, t0 sub-path of P . Clearly, P (s0, t0) is contained in H.

First, suppose that either s0 or t0 is a white node; there is a 2ec-block of C, call it B, that
contains this white node; then we take one unit from the credit of B and use that to pay for the
edge f . (Recall that Bnew is designated as the root 2ec-block of Hnew, and note that Bnew contains
both s0 and t0; moreover, the 2ec-block B (of H) is also contained in Bnew; it can be seen that the
credit invariant is maintained in Hnew although we borrowed one credit from B.)
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Figure 7: Illustration of the notation in Lemma 22. A connected component C 6= C0 of H is shown
(C does not contain R). The large circles indicate 2ec-blocks of C. The path P is indicated by
dashed lines; P contains 3 edges of C. The arrows indicate maximal b-paths ending at 2ec-blocks.

If both s0 and t0 are black nodes, then we resort to a more complex scheme. Let C(s0, s1) be
any maximal b-path of C − E(P (s0, t0)) that starts with s0 and ends with a white node s1, and
let B(s1) denote the 2ec-block that contains the white node s1; note that B(s1) has no nodes in
common with Bnew. Similarly, let B(t1) denote a 2ec-block that contains the terminal white node
t1 (where, t1 6= s1) of a maximal b-path of C −E(P (s0, t0)) that starts with t0; it can be seen that
B(t1) has no nodes in common with Bnew.∗∗ We take 0.5 credits from each of B(s1) and B(t1) and
use that to pay for the edge f . (In Hnew, observe that both s0 and t0 are contained in the root
2ec-block Bnew; moreover, B(s1) and B(t1) are 2ec-blocks, and moreover, both these 2ec-blocks
are b-adjacent to Bnew; hence, the credit invariant is maintained in Hnew although we borrowed
0.5 credits from each of B(s1) and B(t1).)

Finally, consider any new connected component C 6= C0 of H that contains one of the internal
nodes of P . Our algorithm ensures that every new connected component of H, except for C0, is
2EC, hence, C is 2EC. We take one unit from the credit of C and use that to pay for the unique
edge of P that “enters” C. (The credit invariant is maintained in Hnew because C is contained in
Bnew, the designated root 2ec-block of Hnew.)

5.3 Algorithm and analysis for bridge covering

We present the algorithm and analysis of bridge covering based on Lemma 22.
Recall that H satisfies the credit invariant initially, and that Lemma 22 allows us to pay for

all-but-one of the unit-edges added by an ear-augmentation step. We charge the remaining cost (of
one) to a prefix of the R-ear that we denote by Q; Q is the maximal path of C0 contained in the
R-ear and starting with the edge ru. Let a0 denote the other end node of Q (thus, when we traverse
the edges (and nodes) of the R-ear starting with the edge ru, then a0 is the first node incident to
an edge of the R-ear in E(G)−E(H)). Since our goal is to collect as much credit as possible from
Q we choose the R-ear such that either (i) Q has a white node w (w 6= r) or (ii) Q has no white
nodes (other than r), Q has the maximum cost possible, and subject to this, Q has the maximum
number of bridges possible. In other words, we choose (the 3-tuple) P , a0, z0 such that P is a path
of G− ru with one end node a0 in Cu0 and the other end node z0 in Cr0 , none of the internal nodes
of P is in C0, the associated prefix Q satisfies condition (i) or (ii) (stated above), and (subject to all
the above requirements) P has the minimum number of edges from E(G) − E(H). We can easily
compute (the 3-tuple) P , a0, z0 in polynomial time via standard methods from graph algorithms;
this is discussed in the next lemma.

∗∗If s0 = t0, then note that s0 is incident to ≥ 2 bridges of C = C−E(P (s0, t0)), hence, we can ensure that t1 6= s1.
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Lemma 23. P , a0, z0 satisfying the requirements stated above can be computed in polynomial time.

Proof. For each node v ∈ Cu0 , we define γ(v) as follows: γ(v) = ∞ if every path of C0 between v
and r contains a white node w, w 6= r; otherwise, γ(v) = |E(C0(v, r))| + n · cost(C0(v, r)), where
C0(v, r) denotes the unique b-path of C0 between v and r. (Informally speaking, γ(v) assigns a
“rank” to each node v of Cu0 ; if every v, r path of C0 contains two or more white nodes, then the
rank is ∞, otherwise, the rank is determined by the unique b-path of C0 between v and r, and
we rank according to the 2-tuple consisting of the cost and the number of bridges of the relevant
path.)

Then, we construct the following weighted directed graph: the directed graph has two oppositely
oriented edges for each edge of G − V (C0), it has an edge oriented out of V (Cr0) for each edge of
G − ru in the cut δG(V (Cr0)), and it has an edge oriented into V (Cu0 ) for each edge of G − ru in
the cut δG(V (Cu0 )) (there are no oriented edges corresponding to other edges of G); for example,
an edge vx ∈ E(G− ru) with v ∈ V (Cr0) and x ∈ V − V (Cr0) is replaced by the (single) arc (v, x),
an edge v′y ∈ E(G − ru) with v′ ∈ V (Cu0 ) and y ∈ V − V (Cu0 ) is replaced by the (single) arc
(y, v′), and an edge xy ∈ E(G − ru) with both x, y ∈ V − V (C0) is replaced by the pair of arcs
(x, y), (y, x). We assign weights of zero to the oriented edges associated with the edges of H, and
weights of one to the other oriented edges (associated with the edges of E(G)− E(H)). Then, we
apply a reachability computation, taking all the nodes in Cr0 to be the sources. We claim that a
node v ∈ Cu0 is reachable from Cr0 (in the directed graph) iff G− ru has a path between Cr0 and v
such that no internal node of the path is in C0.

Thus, we can find a0 and z0 that satisfy the requirements: we choose a0 to be a node v ∈ Cu0
that is reachable from Cr0 (in the directed graph) and that has the maximum γ() value, and then
we choose z0 to be a node in Cr0 such that the directed graph has a path from this node to a0.
Then, we take P to be a shortest z0, a0 path in the (weighted) directed graph.

An outline of the bridge covering step follows.

Bridge covering (outline):

(0) compute D2, then post-process D2 to obtain D̂2, and let H = D̂2;

(1) pick any (original) connected component C0 of H that has a bridge, then pick any pendant
2ec-block of C0 and designate it as the root 2ec-block R;

(2) repeat

if possible, pick a unit-bridge incident to R, otherwise, pick any zero-bridge incident
to R, and denote the picked bridge by ru;
apply one ear-augmentation step (add one or two ears) to cover a sub-path of
bridges starting with ru, and let Bnew denote the resulting 2ec-block that contains
R and ru;
let R := Bnew;

until R = Bnew has no incident bridges;

(3) stop if H has no bridges, otherwise, go to (1).

Suppose that the prefix Q (excluding r) of the R-ear contains a white node w (thus, w 6= r).
Let B 6= R denote the 2ec-block that contains w. Observe that Bnew contains B and the credits
of both B and Q are available to pay for the current ear-augmentation step and to re-establish the
credit invariant. Note that we must pay one unit for the ear-augmentation step and we may have
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to add another 0.25 units to the credit of Bnew (if Bnew is a 2ec-block that is incident to one or
more zero-bridges and to no unit-bridge). If the sum of the credits of B and Q is < 1.25, then it
can be seen that B has one credit and Q has zero credit. Thus, Q has only one zero-bridge ru.
Then by our choice of ru and the credit invariant, R already has ≥ 2.25 credits, hence, we need
only one credit for the ear-augmentation step (since Bnew gets all the credits of R).

Now, assume that the prefix Q (excluding r) has no white nodes; in particular, the nodes u and
a0 are black. It is easily seen that Q has ≥ 2 bridges. (Since G is 2NC, G− u has a path between
the connected component of C0 − u that contains R and each of the other connected components
of C0 − u; this implies that there exists a choice of an R-ear such that the associated prefix Q′ has
≥ 2 bridges and we have cost(Q′) ≥ 1.)

Suppose that cost(Q) ≥ 2, thus, Q has ≥ 2 unit-bridges. Then, we have ≥ 1.5 credits available
in Q. This suffices to pay for the current ear-augmentation step and to re-establish the credit
invariant.

Now, we may assume that cost(Q) = 1. Let us denote the node sequence of Q by v0, v1, v2, . . . ,
where v0 = r and v1 = u. Clearly, we have three possibilities:

Case 1: Q consists of 2 bridges and cost(v0v1) = 1, cost(v1v2) = 0: We argue that this pos-
sibility cannot occur. Observe that v0 = r, v1 = u and v2 = a0. Observe that G − {v1, v2}
is connected; otherwise, {v1, v2} would be a bad-pair. Consider the connected components of
C0−{v1, v2}; let S denote the set of nodes of the connected component that contains R, and
let T denote V (C0) − {v1, v2} − S. Since G − {v1, v2} is connected, it has path P? between
a node z? ∈ S and a node a? ∈ T such that P? has no internal nodes in C0. Observe that
every path of C0 between r and a? has cost ≥ 2 (because such a path contains the unit-edge
ru as well as another edge of the cut δC0({v1, v2}), and all edges of this cut have cost one);
thus, the prefix Q? associated with P? has cost ≥ 2. This contradicts our choice of P, a0, z0
(because the prefix Q has cost one). See Figure 8.
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Figure 8: Illustration of Case 1 (bridge covering).

Case 2: Q consists of 3 bridges and cost(v0v1) = 0, cost(v1v2) = 1, cost(v2v3) = 0: Then,
we have 0.75 credits available in Q. We argue that this suffices to pay for the current ear-
augmentation step and to re-establish the credit invariant. Observe that v0 = r, v1 = u and
v3 = a0. By our choice of ru and the credit invariant, R has ≥ 2.25 credits. Thus, we can
pay one unit for the ear-augmentation step and we have 2 credits (from R) left for Bnew.
Moreover, v3 is a black node, and it can be seen that one of the unit-bridges of C0 incident
to v3 becomes a bridge incident to Bnew; in other words, at the next iteration, when we
designate Bnew as the root 2ec-block, then only 2 credits are required for Bnew. See Figure 9.

Case 3: Q consists of 2 bridges and cost(v0v1) = 0, cost(v1v2) = 1: Observe that v0 = r,
v1 = u and v2 = a0. Note that v2 is a black node, and it is incident to a bridge other than
v2v1. There are two subcases, namely, either v2 is incident to two unit-bridges or not, and we

22



r

v0

u

v1 v2

z0 a0

v3
R

P

e

Figure 9: Illustration of Case 2 (bridge covering).

choose v3 appropriately. In the former subcase, we take v2v3 to be a unit-bridge, and in the
latter subcase we have to take v2v3 to be the unique zero-bridge incident to v2.

We handle the first subcase (with cost(v2v3) = 1) similarly to Case 2 above, that is, we argue
that the 0.75 credits of the bridge v1v2 suffice to pay for the current ear-augmentation step
and to re-establish the credit invariant (we skip the details).

In the second subcase (with cost(v2v3) = 0), observe that H has precisely two bridges incident
to v2, because v2 is incident to only one unit-bridge (by our choice of v2v3). Our plan is to
add a second ear and then observe that the edge v1v2 becomes redundant after the addition
of the two ears, hence, we can delete this edge from H thereby gaining 1.75 credits. (Note

that when we delete a unit-edge of D̂2 from our solution subgraph H, then all of the 1.75
credits of that edge become available as credits.) Moreover, we get another 0.75 (or more)
credits from the addition of the two ears. Thus we get ≥ 2.5 credits, and this suffices to pay
for the addition of two ears and to re-establish the credit invariant. See Figure 10.
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Figure 10: Illustration of Case 3 (bridge covering).

Observe that G−{v2, v3} is connected; otherwise, {v2, v3} would be a bad-pair. Consider the
connected components of C0−{v2, v3}; let S denote the set of nodes of the connected compo-
nent that contains R, and let T denote V (C0)−{v2, v3}−S. Since G−{v2, v3} is connected,
it has a path P? between a node z? ∈ S and a node a? ∈ T such that P? has no internal
nodes in C0. Moreover, w.l.o.g. we assume that P? has the minimum number of edges from
E(G)− E(H). It can be seen that P?, a?, z? satisfy the following:

(i) Either z? = v1 or there is a bridge v1w1 (of C0) such that v1w1 6= v1v0, v1w1 6= v1v2, and
z? is in the connected component of C0 − v1w1 that contains w1. This follows from a
contradiction argument; the only other possibility is that z? is in Cr0 (the connected com-
ponent of C0 − ur that contains r); but then we would define the prefix Q? associated
with P? to be a path of C0 between r and a?; note that Q? would contain v3 (since C0

has only two bridges incident to v2), hence, Q? would have ≥ 3 bridges and we would
have cost(Q?) ≥ 1; this would contradict our choice of P, a0, z0.

(ii) Now, we define the prefix Q? associated with P? to be a path of C0 between v1 and a?.
Note that Q? contains v3 (since C0 has only two bridges incident to v2). We have two
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cases: either v3 is a black node or it is a white node; in the first case, Q? contains a
unit-bridge incident to v3 and we have cost(Q?) ≥ 2, whereas in the second case, Q?
contains the white node v3. Hence, when we add the ear P?, then either we get ≥ 0.75
credits from a unit-bridge of Q? incident to v3, or we get ≥ 1 credit from the 2ec-block
(of C0) that contains v3.

(iii) There is no connected component of H−C0 that is incident to both P and P?. Otherwise,
suppose that some connected component Ĉ of H is incident to both P and P?. Then
there is a path in (P ∪ P? ∪ Ĉ) that starts at z0 and ends at a?, and whose prefix
Q? ∪ {v0v1} in C0 either has a white node or has cost ≥ 2, contradicting our choice of
P, a0, z0.

Since no connected component of H other than C0 is incident to both P and P?, it follows
that P and P? have no nodes in common. Hence, we can apply Lemma 22 separately
to each of P? and P and thus pay for all-but-one of the unit-edges added by each of the
two ears.

(iv) After adding the two ears, the edge v1v2 can be deleted from H while preserving 2-
edge connectivity, by Proposition 1. To see this, observe that (C0 − v1v2) ∪ P contains
a v1, v2 path, and also (C0 − v1v2) ∪ P? contains a v1, v2 path, and moreover, these two
paths have no internal nodes in common (i.e., (C0 − v1v2) ∪ P ∪ P? contains a cycle
incident to v1 and v2).

Summarizing, when v2v3 is a zero-edge, then we add the two ears P, P? and delete the edge
v1v2 from H; we have sufficient credits to pay for the addition of the two ears and to re-
establish the credit invariant.

Proposition 24. (i) The credit invariant holds for D̂2. (ii) Every iteration of bridge covering
preserves the credit invariant.

Proof. It is easily seen that (i) holds. Now, focus on any iteration. We use the notation of this
section; in particular, we use P to denote the first ear added in an iteration; moreover, we use P̂
to denote the corresponding R-ear (see page 19); also, let Rnew denote the root 2ec-block of Hnew

(assume it exists).
It is easy to verify that parts (1) and (2) of the credit invariant are preserved by every iteration.

Whenever we take away credits from a unit-bridge e of C0 (e.g., when e is in the prefix Q of P̂ ),
then we retain sufficient credits for e (if e stays in Hnew then it keeps ≥ 1 credit, otherwise, it keeps
≥ 0 credit); moreover, if we take away credit from a bridge e of C0, then either e is contained in
the 2ec-block Rnew of Hnew or else e is deleted from H (thus, at most one iteration can take away
credit from a unit-bridge of C0).

Consider part (3) of the credit invariant. First, let us consider the credits of R and Rnew.
Suppose that R has α credits at the start of an iteration. Then, aside from two exceptions, at the
start of the next iteration, Rnew has ≥ α credits; the exceptions occur in cases 2 and 3(first subcase);
in these two cases, R has α ≥ 2.25 credits (since ru is a zero-bridge) while Rnew has ≥ α−0.25 ≥ 2
credits and Rnew is guaranteed to be incident to a unit-bridge; hence, the credit invariant pertaining
to R is preserved. In what follows, we ignore the second subcase of case 3 that adds the two ears
P, P?, and we discuss only the single ear-augmentations; our arguments can be extended for the
double ear-augmentations, but we skip those details. Consider the credits of the other (non-root)
2ec-blocks of H and Hnew. Any 2ec-block of H that contains a node of P̂ is “merged” into Rnew,
hence, the credit invariant is not relevant for such 2ec-blocks of H (we argued above that Rnew

satisfies the credit invariant). Consider a 2ec-block B of H such that there is a b-path (of H)
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between B and a black node of P̂ . Then, in Hnew, Rnew is b-adjacent to B, hence, B is required
to have ≥ 1 credit (by the credit invariant). Although we may remove credits from such 2ec-blocks
(e.g., see the proof of Lemma 22, and note that we take away 0.5 credits from each of B(s1) and
B(t1)), we ensure that each such 2ec-block has at least one credit at the next iteration. Lastly,
consider any 2ec-block B of H that is (node) disjoint from P̂ and is not b-adjacent to any black
node of P̂ . Clearly, B has the same credit in both H and Hnew. It follows that the part(3) of the
credit invariant is preserved in every iteration.

This concludes the discussion of bridge covering.

Proposition 25. At the termination of the bridge covering step, H is a bridgeless 2-edge cover
and the credit invariant holds (thus, every original 2ec-block of H has ≥ 1.5 credits and every new
2ec-block of H has ≥ 2 credits).

6 The gluing step

In this section and in Section 5, we assume that the input is a well-structured MAP instance.
In this section, we focus on the last step of the algorithm, namely, the gluing step, and analyze

the details with the goal of showing that the credits in H suffice to update H to a 2-ECSS of G
by adding some edges and deleting some edges (i.e., the difference between the number of edges
added and the number of edges deleted in the gluing step is ≤ the credit of H at the start of the
gluing step). The following result summarizes this section:

Proposition 26. At the termination of the bridge-covering step, let H denote the bridgeless 2-
edge cover computed by the algorithm and suppose that the credit invariant holds; let γ denote
credits(H). Then the gluing step augments H to a 2-ECSS by adding ≤ γ unit-edges.

It is convenient to define the following multi-graph: let Ĝ be the multi-graph obtained from G
by contracting each 2ec-block Bi of H into a single node that we will denote by Bi (thus, Bi is
either a 2ec-block of H or a node of Ĝ). Note that the algorithm “operates” on G and never refers
to Ĝ; but, for our discussions and analysis, it is convenient to refer to Ĝ.

At the start of the gluing step, recall that each original 2ec-block of H has ≥ 1.5 credits and
each new 2ec-block of H has ≥ 2 credits. We pick any 2ec-block R0 of H and designate it as the
root R; then we apply iterations; each iteration adds to H the edges of an ear whose start node
and end node are in R; some iterations may add a second ear. After each iteration, we update the
notation so that R denotes the 2ec-block of the current subgraph H that contains R0. Our plan is
to keep adding ears to H until all of the nodes are in R. Thus, we terminate when H is a 2-ECSS.
In the following discussion, we assume that R has zero credits, i.e., we ignore the credits available
in R while paying for the edges added in ear-augmentation steps.

Consider a cycle Ĉ of Ĝ incident to R. Observe that each of the non-root nodes of Ĉ has ≥ 1.5
credits, hence, we have ≥ 1.5(|Ĉ| − 1) credits available from (the nodes of) Ĉ and this is ≥ |Ĉ|
whenever |Ĉ| ≥ 3. Thus, we have enough credit to buy all the edges of Ĉ whenever |Ĉ| ≥ 3.
Moreover, if |Ĉ| = 2 and the non-root node of Ĉ has ≥ 2 credits, then we have enough credit to
buy all the edges of Ĉ. Thus, we have insufficient credit only when |Ĉ| = 2 and the non-root node
of Ĉ has exactly 1.5 credits.

In what follows, we assume that all the cycles of Ĝ incident to R have insufficient credit. Let
Ĉ = R,B,R be a cycle of Ĝ that has insufficient credit; thus, the non-root node of Ĉ is denoted
by B. Clearly, B is an original 2ec-block of H (otherwise, it would have 2 credits rather than
1.5 credits). Let b denote the number of original nodes of B. It can be seen that b ∈ {2, 3, 4}.
Moreover, for b ∈ {3, 4}, note that B cannot have a cut node (otherwise, B would have ≥ 1 + db/2e

25



unit-edges), and hence, (since B is 2NC) B must contain a spanning cycle. For b ∈ {3, 4}, let Q(B)
denote any spanning cycle of B.

The two edges of Ĉ correspond to two edges of G between B and R; let e denote one of these
edges, and let ve denote the end node of e in B. Since G is 2NC, G−ve has a path between (B−ve)
and R. Each such path has all its internal nodes in V (R) ∪ (V (B)− {ve}) (by our assumption on
cycles of Ĝ incident to R), hence, there exists an edge f of G between (B−ve) and R; let uf denote
the end node of f in B − ve. See Figure 11.

R Be
ve

f uf

Figure 11: Illustration of R, B, and ve, uf .

Now, we have two cases, depending on whether ve and uf are adjacent in B or not.

Case 1: e, f can be chosen such that B has an edge between ve and uf : In this case, we
claim that e, f can be chosen such that B has a unit-edge between ve and uf . By way of
contradiction, suppose that veuf is a zero-edge. Then we have b ∈ {3, 4} (otherwise, if b = 2,
then B would consist of two parallel unit-edges), and moreover, G − {ve, uf} is connected
(since {ve, uf} is not a bad-pair). It can be seen that G has an edge rv0 such that r is in
R and v0 is in B − {ve, uf}, and moreover, G has an edge between v0 and {ve, uf} (we skip
the details). W.l.o.g. suppose that G has the edge v0uf ; this is a unit-edge (since veuf is a
zero edge). Then by replacing the pair of edges e, f by rv0, f , we have two edges between R
and B such that their end nodes in B are distinct and there exists a unit-edge of B between
these two end nodes. Our claim follows.

Now, observe that the graph H ∪ {e, f} − {veuf} has two edge-disjoint ve, uf paths. We buy
the edges e, f and sell the unit-edge veuf ; that is, we add the two edges e, f to H and remove
the edge veuf from H. (In the gluing step, when we delete a unit-edge from our solution
subgraph H, then one credit of that edge become available to the algorithm; note that unit-
edges in E(H) − E(D̂2) have only one credit.) In the resulting graph Hnew, the connected
component containing R0 (as well as R and B) is 2EC, by Proposition 1. This step results in
a surplus of 0.5 credits (we get 1.5 credits from B, one credit from selling veuf , and we pay
two credits for the edges e, f).

Case 2: for any choice of e, f there is no edge between ve and uf in B: Then, clearly b =
|V (B)| > 3, thus b = 4, and B has a spanning cycle Q(B). Let Q = v1, v2, v3, v4, v1 denote
Q(B), where w.l.o.g. ve = v1 and uf = v3. Since B has 1.5 credits, two of the (non-adjacent)
edges of Q must be zero-edges. There must be one or more edges incident to v2 or v4,
otherwise, Q would be a redundant 4-cycle of G.

Suppose that G has the edge v2v4. See Figure 12a. We buy the three edges e, f, v2v4 and
we sell the two unit-edges of Q. In the resulting graph Hnew, the connected component
containing R0 (as well as R and B) is 2EC, by Proposition 1. This step results in a surplus
of 0.5 credits (we get 1.5 credits from B, two credits from selling the two unit edges of Q,
and we pay three credits for the edges e, f, v2v4).

Lastly, suppose that v2 and v4 are nonadjacent in G. Then it can be seen that G has an
edge between another 2ec-block B′ of H (where B′ 6= B and B′ 6= R) and one of v2 or v4,
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(a) Illustration of R, B, and
non-adjacent ve, uf , where B consists of
a 4-cycle and a diagonal. Dashed lines

indicate zero-edges.
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ẽ

P̃

P̃

P̃

P̃

(b) Illustration of R, B, and non-adjacent ve, uf , where B is a
4-cycle with two zero-edges v2v3, v1v4.

Figure 12: Illustrations for Case 2.

say v2; let us denote this edge by ẽ. Since G is 2NC, there is a path in G− {v2} between B′

and B − {v2}. Let P̃ denote such a path that has the fewest edges of E(G) − E(H). In Ĝ,
observe that P̃ ∪{ẽ} corresponds to a cycle ĈB′ that is incident to B and B′. Moreover, in Ĝ,
note that ĈB′ cannot be incident to R (by our assumption on cycles of Ĝ incident to R). See
Figure 12b. Let eQ denote the unit-edge of Q that has its end nodes among v1, v2, v3. It can

be seen that H ∪ {e, f, ẽ} ∪E(P̃ )− {eQ} has two edge-disjoint paths between the end nodes

of eQ. We buy e, f , we sell eQ, and moreover, we buy the edges of
(
E(P̃ ) − E(H)

)
∪ {ẽ}.

In the resulting graph Hnew, the connected component containing R0 (as well as R and B)
is 2EC, by Proposition 1. It can be seen that this step results in a surplus of credits; note
that the sum of the credits of the 2ec-blocks (excluding B) incident to P̃ minus the size of(
E(P̃ )− E(H)

)
∪ {ẽ} is ≥ −0.5.

7 Examples showing lower bounds

This section presents two examples that give lower bounds on our results on MAP. The first example
gives a construction such that opt ≈ 7

4τ . This shows that Theorem 6 is essentially tight. The second
example gives a construction such that the cost of the solution computed by our algorithm is≈ 7

4opt.

7.1 Optimal solution versus min-cost 2-edge cover

Proposition 27. For any k ∈ N, there exists a MAP instance Gk such that τ(Gk) ≤ 4k + 3 and
opt(Gk) ≥ 7k + 3.

Proof. The graph Gk consists of a root 2-ec block B0 and k copies J1, . . . , Jk of a gadget subgraph
J . The gadget subgraph J consists of 8 nodes v1, . . . , v8 and 11 edges; there are four zero-edges
v1v4, v2v3, v5v8, v6v7, and seven unit-edges v1v2, v1v7, v2v5, v3v4, v3v8, v5v6, v7v8; see the subgraph
induced by the nodes v1, . . . , v8 in Figure 13; observe that 8 of the 11 edges form two 4-cycles
(namely, v1, v2, v3, v4, v1 and v5, v6, v7, v8, v5) and the other three edges are v2v5, v3v8, and v1v7.

Let B0 be a 6-cycle w1, . . . , w6, w1 that has 3 unit-edges and 3 zero-edges.
Gk has two unit-edges between each copy of the gadget subgraph Ji (i = 1, . . . , k) and B0; these

two edges are incident to the nodes v1 and v3 of Ji (see the illustration in Figure 13) and to the
nodes w1 and w4 of B0. Observe that the subgraph of Gk consisting of B0 and the two 4-cycles
(namely, v1, v2, v3, v4, v1 and v5, v6, v7, v8, v5) of each copy of the gadget subgraph is a (feasible)
2-edge cover of Gk of cost 4k + 3. Hence, τ(Gk) ≤ 4k + 3.
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v1 v2

v3v4

v5 v6

v7v8

B0

Figure 13: Example graph (with k = 1 copy of the 8-node gadget) where opt ≥ 7k + ε and
τ ≤ 4k + ε, where ε is a constant. Edges of cost zero and one are illustrated by dashed and solid

lines, respectively. B0 is the root 2ec-block; ε is the cost of an optimal solution on B0.

Finally, we claim that opt(Gk) = cost(OPT(Gk)) ≥ 7k + 3. In what follows, we use OPT to
denote an optimal solution of Gk. Clearly, OPT has to contain all the edges of B0 as well as the
two edges between B0 and each copy of the gadget subgraph. Now, we focus on one copy Ji of the
gadget subgraph, and let opt(Gk, Ji) denote the cost of the edges of OPT incident to Ji. We will
show that opt(Gk, Ji) ≥ 7, hence, it follows that opt(Gk) = 3 +

∑k
i=1 opt(Gk, Ji) ≥ 7k + 3. Since

deg(v4) = deg(v6) = 2, OPT must pick the edges v1v4 and v3v4 as well as the edges v5v6 and v6v7.
Consider the cut δGk

({v5, v6, v7, v8}). This cut has three unit-edges: v1v7, v2v5, v3v8. We have the
following cases:
Case 1: OPT picks all three edges of the cut. Then opt(Gk, Ji) ≥ 7.
Case 2: OPT does not pick all three edges of the cut. Then we will show that it must pick two
edges from the cut and one more unit-edge, thus giving us opt(Gk, Ji) ≥ 7. We have three subcases:
Case 2.1: v1v7 6∈ OPT: then OPT must pick v7v8 and the other 2 edges of the cut.
Case 2.2: v2v5 6∈ OPT: then OPT must pick v1v2 and the other 2 edges of the cut.
Case 2.3: v3v8 6∈ OPT: then OPT must pick v7v8 and the other 2 edges of the cut.
Hence, opt(Gk, Ji) ≥ 7 and we have opt(Gk) ≥ 7k + 3. This completes the proof.

7.2 Optimal solution versus algorithm’s solution

In this section we present a family of graphs Gk, k = 1, 2, 3 . . . for which the ratio of the cost of
a solution obtained by our algorithm and the cost of an optimal solution approaches 7

4 . Let the
solution subgraph found by applying our algorithm to Gk be denoted by ALGO(Gk).

Proposition 28. For any k ∈ N, there exists a MAP instance Gk such that cost(ALGO(Gk)) ≥
7k + 6 and opt(Gk) ≤ 4k + 7.

Proof. Let J be a gadget on nodes v1, v2, v3, v4, w1, w2, w3, w4, with edges v1v4, v2v3, w1w2, and
w3w4 of cost zero, and edges v1v2, v3v4, w1w4, w2w3, g = v4w1 and h = v2v4 of cost one, as shown
in Figure 14 (where dashed and solid lines represent edges of cost zero and one, respectively).

The graphGk = (Vk, Ek) is constructed as follows. We start with a 6-cycleB0 = b1, b2, b3, b4, b5, b6, b1
of unit-edges, of cost 6. We place k copies J1, . . . , Jk of the gadget J in the following manner. Let
vij and wi` denote the nodes vj and w` of Ji, and let gi and hi denote the edges g and h of Ji.

First, we attach J1 to B0 by adding the two unit-edges e1 = b1v
1
1 and f1 = b4v

1
3. Then, for each

i ∈ {2, . . . , k}, we attach Ji to Ji−1 by adding the two unit-edges ei = wi−12 vi1 and fi = wi−13 vi3.
The graph Gk is illustrated in Figure 15. Observe that Gk is a well-structured MAP instance.

Note that the cost of any 2-edge cover is ≥ 4k + 6, since it contains all edges of B0, as well as
(at least) one unit-edge incident to each of the eight nodes of each gadget. W.l.o.g, D̂2 consists of

28



v1 v4

v3 v2

w1 w2

w4 w3

g

h

Figure 14: The gadget J . Edges of cost zero and one are illustrated by dashed and solid lines,
respectively.
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J1 J2, . . . , Jk−1 Jk

Figure 15: The graph Gk has copies J1, . . . , Jk of the gadget. All edges have cost one, except the
zero-edges of J1, . . . , Jk.

B0 and the two 4-cycles v1, v2, v3, v4, v1 and w1, w2, w3, w4, w1 of each gadget. Note that our choice
of D̂2 is a bridgeless 2-edge cover.

Consider the working of the algorithm on Gk. Since D̂2 has no bridges, the algorithm proceeds
to the gluing step. We use the notation of Section 6 to describe the working of the gluing step on
Gk.

In each iteration of the gluing step, we choose the 2ec-block containing B0 to be the root
2ec-block. In the first iteration, R = B0 is the root 2ec-block, and the block B is the cycle
v1, v2, v3, v4, v1 of J1, i.e., the ear-augmentation step picks the “ear” R,B,R and takes the edges
e, f (see Figure 11) to be the edges e1, f1 of Gk. Since the end nodes of e1 and f1 are non-adjacent
in B, we apply case 2 of the gluing step by taking B′ to be the 4-cycle w1, w2, w3, w4, w1 of J1 (see
Figure 12b); moreover, we take ẽ to be the edge g1 (of Gk), and we take P̃ to consist of h1 and its
two end nodes (in Gk). The algorithm buys the four edges e1, f1, g1 and h1 and sells one unit-edge
(say v3v4), so the algorithm incurs a cost of 7 for J1. In subsequent iterations, the same case of
the gluing step is applied to each of the copies J2, . . . , Jk of the gadget, hence, ALGO(Gk) incurs
a cost of 7 for each copy of the gadget; thus, we have cost(ALGO(Gk)) = 7k + 6.

On the other hand, the subgraph G∗ of Gk (described below) is a 2-ECSS of cost 4k + 7;
E(G∗) consists of the union of k + 3 sets of edges, namely, the set of edges {ei, fi, gi, hi} for each
i ∈ {1, . . . , k}, the set of zero-edges of Gk, E(B0), and the singleton {wk2wk3} (the edge wk2w

k
3 is

indicated by the right-most vertical line in Figure 15). Hence, opt(Gk) ≤ 4k + 7.
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[16] A. Sebö and J. Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the
path version, and 4/3 for two-edge-connected subgraphs. Combinatorica, 34(5):597–629, 2014.

[17] S. Vempala and A. Vetta. Factor 4/3 approximations for minimum 2-connected subgraphs. In K. Jansen
and S. Khuller, editors, Approximation Algorithms for Combinatorial Optimization, Third International
Workshop, APPROX 2000, Saarbrücken, Germany, September 5-8, 2000, Proceedings, volume 1913 of
Lecture Notes in Computer Science, pages 262–273. Springer, 2000.

[18] H. Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc., 34:339–362, 1932.

[19] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms. Cambridge University
Press, 2011.

30


